تقریب مقادیر ویژه ورق با استفاده از شبکه عصبی مصنوعی
Authors
abstract
هدف از این مقاله، تعیین فرکانس زاویه ای طبیعی ورقها با توجه به شرایط مختلف تکیه گاهی به کمک شبکه عصبی مصنوعی است. یکی از مشهورترین روشهای آموزش شبکه عصبی، استفاده از الگوریتم انتشار برگشتی است. این الگوریتم برای آموزش شبکه های چند لایه قابل کاربرد است. الگوریتم انتشار برگشتی بر مبنای کاهش گرادیان بوده و در آن شیب خطا به تدریج کم شده و وزنهای شبکه برای رسیدن به حداقل خطا، تعدیل می شود. در این تحقیق ابتدا فرکانس واقعی ورقها با استفاده از برنامهansys محاسبه شده و به عنوان تابع هدف شبکه عصبی در نظر گرفته می شود. سپس با استفاده از مقادیر بدست آمده در مرحله قبل، دسته ای از ورودی ها که شامل ابعاد و خصوصیات جنس ورقهاست ایجاد شده و یک شبکه عصبی ساخته شده و آموزش داده می شود. پس از آموزش شبکه از داده های دیگری برای آزمایش شبکه استفاده می شود. نتایج تحلیل به خوبی بیانگر عملکرد شبکه عصبی بوده به طوری که زمان محاسبه فرکانس به میزان قابل توجهی کاهش یافته است.
similar resources
برآورد استحکام فشاری ماسه ریخته گری در مقادیر گوناگون رطوبت با استفاده از شبکه عصبی مصنوعی
کیفیت قطعات ریخته گری در قالب گیری ماسه به گونهای چشم گیر به خواص ماسه مورد استفاده از قبیل استحکام فشاری، نفوذپذیری، سختی قالب و... بستگی دارد که این خواص نیز به پارامترهایی مانند رطوبت، اندازه و شکل دانه ماسه، میزان چسب و... بستگی دارند. در این مقاله، تعداد 84 آزمایش عملی برای بدست آوردن داده های مورد نیاز برای شبیه سازی که همان استحکام فشاری ماسه در درصد رطوبت های معین بودند، انجام گرفته اس...
full textتخمین استحکام فشاری ماسه ریختهگری در مقادیر مختلف رطوبت با استفاده از شبکه عصبی مصنوعی
کیفیت قطعات ریختهگری درقالبگیری ماسه بهطور چشمگیری به خواص ماسهی مورد استفاده از قبیل استحکام فشاری، نفوذپذیری، سختی قالب و... بستگی دارد که این خواص نیز به پارامترهایی مانند رطوبت، اندازه و شکل دانه ماسه، میزان چسب و... بستگی دارند. در این مقاله، از شبکه عصبی مصنوعی برای بررسی تاثیر میزان رطوبت در استحکام فشاری ماسه استفاده شده است. آزمایشهای عملی متعددی برای بهدست آوردن دادههای مورد ن...
full textتخمین استحکام فشاری ماسه ریختهگری در مقادیر مختلف رطوبت با استفاده از شبکه عصبی مصنوعی
کیفیت قطعات ریختهگری درقالبگیری ماسه بهطور چشمگیری به خواص ماسهی مورد استفاده از قبیل استحکام فشاری، نفوذپذیری، سختی قالب و... بستگی دارد که این خواص نیز به پارامترهایی مانند رطوبت، اندازه و شکل دانه ماسه، میزان چسب و... بستگی دارند. در این مقاله، از شبکه عصبی مصنوعی برای بررسی تاثیر میزان رطوبت در استحکام فشاری ماسه استفاده شده است. آزمایشهای عملی متعددی برای بهدست آوردن دادههای مورد ن...
full textتعیین خرج ویژه بهینه در عملیات آتشکاری با استفاده از شبکه¬های عصبی مصنوعی
هدف اصلی در این مطالعه، بررسی کاربرد شبکه عصبی در تخمین خرج ویژه بهینه بر اساس یک سری ازمشاهدات و محاسبات عددی میباشد. پارامترهای ورودی مورد نیاز جهت مدلسازی، شامل 12 ویژگی زمینشناسی و ژئومکانیکی میباشد. اطلاعات مورد نیاز برای این تحقیق از تونل سرریز سد کوثر جمع آوری شده است. شبکه عصبی طراحی شده در این مطالعه توسط دادههای آموزشی و آزمایشی مورد ارزیابی قرار میگیرد. نتایج به دست آمده نشان م...
full textمدلسازی بازده کششی تراکتور با استفاده از شبکه عصبی مصنوعی
در این مطالعه آزمایشهای مزرعهای در شرایط متفاوت عمق شخم، سرعت پیشروی و میزان وزنههای متصل به تراکتور انجام شد. در این تحقیق، عمق شخم در چهار سطح 5، 10، 15 و 20 سانتیمتر، سرعتهای پیشروی در چهار سطح 5/2، 5/3، 5/4 و 5/5 کیلومتر بر ساعت و میزان سنگینکننده نیز در چهار سطح 0، 40، 80 و 120 کیلوگرم قرار گرفت. شبکههای عصبی مدلسازی شده در این تحقیق که به منظور پیشبینی بازده کششی تراکتور مورد اس...
full textMy Resources
Save resource for easier access later
Journal title:
مدلسازی در مهندسیجلد ۱۱، شماره ۳۵، صفحات ۴۹-۶۲
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023